27 research outputs found

    Analysis of a Collaborative Filter Based on Popularity Amongst Neighbors

    Full text link
    In this paper, we analyze a collaborative filter that answers the simple question: What is popular amongst your friends? While this basic principle seems to be prevalent in many practical implementations, there does not appear to be much theoretical analysis of its performance. In this paper, we partly fill this gap. While recent works on this topic, such as the low-rank matrix completion literature, consider the probability of error in recovering the entire rating matrix, we consider probability of an error in an individual recommendation (bit error rate (BER)). For a mathematical model introduced in [1],[2], we identify three regimes of operation for our algorithm (named Popularity Amongst Friends (PAF)) in the limit as the matrix size grows to infinity. In a regime characterized by large number of samples and small degrees of freedom (defined precisely for the model in the paper), the asymptotic BER is zero; in a regime characterized by large number of samples and large degrees of freedom, the asymptotic BER is bounded away from 0 and 1/2 (and is identified exactly except for a special case); and in a regime characterized by a small number of samples, the algorithm fails. We also present numerical results for the MovieLens and Netflix datasets. We discuss the empirical performance in light of our theoretical results and compare with an approach based on low-rank matrix completion.Comment: 47 pages. Submitted to IEEE Transactions on Information Theory (revised in July 2011). A shorter version would be presented at ISIT 201

    Consistent Signal Parameter Estimation with 1-Bit Dithered Sampling

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    A Channel Coding Perspective of Collaborative Filtering

    Full text link
    We consider the problem of collaborative filtering from a channel coding perspective. We model the underlying rating matrix as a finite alphabet matrix with block constant structure. The observations are obtained from this underlying matrix through a discrete memoryless channel with a noisy part representing noisy user behavior and an erasure part representing missing data. Moreover, the clusters over which the underlying matrix is constant are {\it unknown}. We establish a sharp threshold result for this model: if the largest cluster size is smaller than C1log(mn)C_1 \log(mn) (where the rating matrix is of size m×nm \times n), then the underlying matrix cannot be recovered with any estimator, but if the smallest cluster size is larger than C2log(mn)C_2 \log(mn), then we show a polynomial time estimator with diminishing probability of error. In the case of uniform cluster size, not only the order of the threshold, but also the constant is identified.Comment: 32 pages, 1 figure, Submitted to IEEE Transactions on Information Theor

    A Novel Conflict-Free Memory and Processor Architecture for DVB-T2 LDPC Decoding

    Get PDF
    In this paper, we present a flexible architecture for an LDPC decoder that fully exploits the structure of the codes defined in the DVB-T2 standard (Digital Video Broadcasting - Second Generation Terrestrial). We propose a processor and memory architecture which uses the flooding schedule and has no memory access conflicts, which are encountered in serial schedule decoders proposed in the literature. Thus, unlike previous works, we do not require any extra logic or ad hoc designs to resolve memory conflicts. Despite the typically slower convergence of flooding schedule compared to serial schedule decoders, our ar- chitecture meets the throughput and BER requirements specified in the DVB-T2 standard. Our design allows a trade-off between memory size and performance by the selection of the number of bits per message without affecting the general memory arrangement. Besides, our architecture is not algorithm specific: any check-node message processing algorithm can be used (Sum-Product, Min-Sum, etc.) without modifying the basic architecture. Furthermore, by simply adding relevant small ROM tables, we get a decoder that is fully compatible with all three second generation DVB standards (DVB-T2, DVB-S2 and DVB-C2). We present simulation results to demonstrate the viability of our solution both functionally and in terms of the bit-error rate performance. We also discuss the memory requirements and the throughput of the architecture, and present preliminary synthesis results in CMOS 130nm technology

    WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

    Full text link
    Visual anomaly classification and segmentation are vital for automating industrial quality inspection. The focus of prior research in the field has been on training custom models for each quality inspection task, which requires task-specific images and annotation. In this paper we move away from this regime, addressing zero-shot and few-normal-shot anomaly classification and segmentation. Recently CLIP, a vision-language model, has shown revolutionary generality with competitive zero-/few-shot performance in comparison to full-supervision. But CLIP falls short on anomaly classification and segmentation tasks. Hence, we propose window-based CLIP (WinCLIP) with (1) a compositional ensemble on state words and prompt templates and (2) efficient extraction and aggregation of window/patch/image-level features aligned with text. We also propose its few-normal-shot extension WinCLIP+, which uses complementary information from normal images. In MVTec-AD (and VisA), without further tuning, WinCLIP achieves 91.8%/85.1% (78.1%/79.6%) AUROC in zero-shot anomaly classification and segmentation while WinCLIP+ does 93.1%/95.2% (83.8%/96.4%) in 1-normal-shot, surpassing state-of-the-art by large margins.Comment: Accepted to Conference on Computer Vision and Pattern Recognition (CVPR) 202

    Rethinking Few-Shot Object Detection on a Multi-Domain Benchmark

    Full text link
    Most existing works on few-shot object detection (FSOD) focus on a setting where both pre-training and few-shot learning datasets are from a similar domain. However, few-shot algorithms are important in multiple domains; hence evaluation needs to reflect the broad applications. We propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms. We comprehensively analyze the impacts of freezing layers, different architectures, and different pre-training datasets on FSOD performance. Our empirical results show several key factors that have not been explored in previous works: 1) contrary to previous belief, on a multi-domain benchmark, fine-tuning (FT) is a strong baseline for FSOD, performing on par or better than the state-of-the-art (SOTA) algorithms; 2) utilizing FT as the baseline allows us to explore multiple architectures, and we found them to have a significant impact on down-stream few-shot tasks, even with similar pre-training performances; 3) by decoupling pre-training and few-shot learning, MoFSOD allows us to explore the impact of different pre-training datasets, and the right choice can boost the performance of the down-stream tasks significantly. Based on these findings, we list possible avenues of investigation for improving FSOD performance and propose two simple modifications to existing algorithms that lead to SOTA performance on the MoFSOD benchmark. The code is available at https://github.com/amazon-research/few-shot-object-detection-benchmark.Comment: Accepted at ECCV 202

    Can We Improve Over Weber Sampling of Haptic Signals?

    No full text
    Abstract — In applications such as telesurgery, it is required to transmit haptic signals to a remote location with a delay of at most few milliseconds. To reduce the packet rate and yet retain perceptual quality, adaptive sampling has been explored in the literature. In particular, in earlier work we proposed and analyzed an adaptive sampling scheme based on Weber’s law of perception. In this paper, we explore other possible adaptive sampling candidates. We describe an experimental setup where users are subjected to piecewise constant haptic stimuli to which they can respond with a click. We record the clicks and ask the question: can we identify signal features and classiers to predict the clicks? The answer suggests adaptive sampling schemes that improve over Weber sampling. I
    corecore